@inproceedings{muhammad-etal-2025-brighter, title = "{BRIGHTER}: {BRI}dging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages", author = "Muhammad, Shamsuddeen Hassan and Ousidhoum, Nedjma and Abdulmumin, Idris and Wahle, Jan Philip and Ruas, Terry and Beloucif, Meriem and de Kock, Christine and Surange, Nirmal and Teodorescu, Daniela and Ahmad, Ibrahim Said and Adelani, David Ifeoluwa and Aji, Alham Fikri and Ali, Felermino D. M. A. and Alimova, Ilseyar and Araujo, Vladimir and Babakov, Nikolay and Baes, Naomi and Bucur, Ana-Maria and Bukula, Andiswa and Cao, Guanqun and Tufi{\~n}o, Rodrigo and Chevi, Rendi and Chukwuneke, Chiamaka Ijeoma and Ciobotaru, Alexandra and Dementieva, Daryna and Gadanya, Murja Sani and Geislinger, Robert and Gipp, Bela and Hourrane, Oumaima and Ignat, Oana and Lawan, Falalu Ibrahim and Mabuya, Rooweither and Mahendra, Rahmad and Marivate, Vukosi and Panchenko, Alexander and Piper, Andrew and Ferreira, Charles Henrique Porto and Protasov, Vitaly and Rutunda, Samuel and Shrivastava, Manish and Udrea, Aura Cristina and Wanzare, Lilian Diana Awuor and Wu, Sophie and Wunderlich, Florian Valentin and Zhafran, Hanif Muhammad and Zhang, Tianhui and Zhou, Yi and Mohammad, Saif M.", editor = "Che, Wanxiang and Nabende, Joyce and Shutova, Ekaterina and Pilehvar, Mohammad Taher", booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2025", address = "Vienna, Austria", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2025.acl-long.436/", doi = "10.18653/v1/2025.acl-long.436", pages = "8895--8916", ISBN = "979-8-89176-251-0", abstract = "People worldwide use language in subtle and complex ways to express emotions. Although emotion recognition{--}an umbrella term for several NLP tasks{--}impacts various applications within NLP and beyond, most work in this area has focused on high-resource languages. This has led to significant disparities in research efforts and proposed solutions, particularly for under-resourced languages, which often lack high-quality annotated datasets.In this paper, we present BRIGHTER{--}a collection of multi-labeled, emotion-annotated datasets in 28 different languages and across several domains. BRIGHTER primarily covers low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances labeled by fluent speakers. We highlight the challenges related to the data collection and annotation processes, and then report experimental results for monolingual and crosslingual multi-label emotion identification, as well as emotion intensity recognition. We analyse the variability in performance across languages and text domains, both with and without the use of LLMs, and show that the BRIGHTER datasets represent a meaningful step towards addressing the gap in text-based emotion recognition." }